Predictive Coding: A Unified Theory of Cognition in Health and Disease?

Fig. 1: Illustration of the multiscale architecture of brain function and levels of study.
Fig. 2: Schematic of hierarchical message passing as predicted by predictive coding models.
Fig. 3: Proposed schematic circuit motif of neocortical-hippocampal interaction.
Fig. 4 A common framework for the characterisation of cognitive deficits.
Figure 5. Synergies between drug development, research into the physical substrate of cognitive deficits and theoretical advancements in predictive coding.

[0] Conversations with Dr Karl Friston (email).

[1] Eldridge, R. (2014). Hegel’s Account of the Unconscious and Why It Matters. The Review of Metaphysics, Vol. 3, pp. 491–515.

[2] Swanson, L. (2016). The Predictive Processing Paradigm Has Roots in Kant. Frontiers in Systems Neuroscience, 10, pp 445–466.

[3] Friston, K. (2012.) The history of the future of the Bayesian brain. NeuroImage, 62(2), pp.1230- 1233.

[4] Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), pp.815–836.

[5] Meyer, T. and Olson, C. (2011). Statistical learning of visual transitions in monkey inferotemporal cortex. Proceedings of the National Academy of Sciences, 108(48), pp.19401- 19406.

[6] Alink, A., Schwiedrzik, C., Kohler, A., Singer, W. and Muckli, L. (2010). Stimulus Predictability Reduces Responses in Primary Visual Cortex. Journal of Neuroscience, 30(8), pp.2960–2966.

[7] den Ouden, H., Daunizeau, J., Roiser, J., Friston, K. and Stephan, K. (2010). Striatal Prediction Error Modulates Cortical Coupling. Journal of Neuroscience, 30(9), pp.3210–3219.

[8] Todorovic, A. and de Lange, F. (2012). Repetition Suppression and Expectation Suppression Are Dissociable in Time in Early Auditory Evoked Fields. Journal of Neuroscience, 32(39), pp.13389- 13395.

[9] Parr, T., Friston, K.J. (2019). Generalised free energy and active inference. Biol Cybern 113, pp.495– 513.

[10] Shipp, S. (2016). Neural Elements for Predictive Coding. Frontiers in Psychology, 7.

[11] Moran, R., Campo, P., Symmonds, M., Stephan, K., Dolan, R. and Friston, K. (2013). Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation. Journal of Neuroscience, 33(19), pp.8227–8236.

[12] Rao, R. and Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), pp.79–87.

[13] Weilnhammer, V., Stuke, H., Hesselmann, G., Sterzer, P. and Schmack, K. (2017). A predictive coding account of bistable perception — a model-based fMRI study. PLOS Computational Biology, 13(5), p.e1005536.

[14] van Heusden, E., Harris, A., Garrido, M. and Hogendoorn, H. (2019). Predictive coding of visual motion in both monocular and binocular human visual processing. Journal of Vision, 19(1), p.3.

[15] Kahl, S. and Kopp, S. (2018). A Predictive Processing Model of Perception and Action for Self- Other Distinction. Frontiers in Psychology, 9.

[16] Vuust, P. and Witek, M. (2014). Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Frontiers in Psychology, 5.

[17] Denham, S. and Winkler, I. (2020). Predictive coding in auditory perception: challenges and unresolved questions. European Journal of Neuroscience, 51(5), pp.1151–1160.

[18] Barron, H., Auksztulewicz, R. and Friston, K. (2020). Prediction and memory: A predictive coding account. Progress in Neurobiology, 192, p.101821.

[19] Maunsell, J. and van Essen, D. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. The Journal of Neuroscience, 3(12), pp.2563–2586.

[20] Buchel, C. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex, 7(8), pp.768–778.

[21] Girard, P. and Bullier, J. (1989). Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. Journal of Neurophysiology, 62(6), pp.1287–1302.

[22] Lidow, M., Goldman-Rakic, P., Gallager, D. and Rakic, P. (1991). Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience, 40(3), pp.657–671.

[23] Bastos, A., Usrey, W., Adams, R., Mangun, G., Fries, P. and Friston, K. (2012). Canonical Microcircuits for Predictive Coding. Neuron, 76(4), pp.695–711.

[24] Arnal, L. and Giraud, A., 2021. Cortical Oscillations and Sensory Predictions. Cell. [25] da Costa, N. (2010). Whose cortical column would that be?. Frontiers in Neuroanatomy,.

[26] Markov, N., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C., Lamy, C., Misery, P., Giroud, P., Ullman, S., Barone, P., Dehay, C., Knoblauch, K. and Kennedy, H. (2013). Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex. Journal of Comparative Neurology, 522(1), pp.225–259.

[27] Squire, L. and Zola-Morgan, S. (1991). The Medial Temporal Lobe Memory System. Science, 253(5026), pp.1380–1386.

[28] Stachenfeld, K., Botvinick, M. and Gershman, S. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20(11), pp.1643–1653.

[29] Pezzulo, G., Kemere, C. and van der Meer, M. (2017). Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Annals of the New York Academy of Sciences, 1396(1), pp.144–165.

[30] Jensen, O. and Lisman, J. (1996). Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & Memory, 3(2–3), pp.279–287.

[31] Tsodyks, M., Skaggs, W., Sejnowski, T. and McNaughton, B. (1998). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: A spiking neuron model. Hippocampus, 6(3), pp.271–280.

[32] Barron, H., Auksztulewicz, R. and Friston, K. (2020). Prediction and memory: A predictive coding account. Progress in Neurobiology, 192, p.101821.

[33] Moscovitch, M., Cabeza, R., Winocur, G. and Nadel, L. (2016). Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation. Annual Review of Psychology, 67(1), pp.105–134.

[34] Rugg, M. and Vilberg, K. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23(2), pp.255–260.

[35] Teyler, T. and Rudy, J. (2007). The hippocampal indexing theory and episodic memory:Updating the index. Hippocampus, 17(12), pp.1158–1169.

[36] Barron, H., Auksztulewicz, R. and Friston, K. (2020). Prediction and memory: A predictive coding account. Progress in Neurobiology, 192, p.101821.

[37] Tse, D., Langston, R., Kakeyama, M., Bethus, I., Spooner, P., Wood, E., Witter, M. and Morris, R. (2007). Schemas and Memory Consolidation. Science, 316(5821), pp.76–82.

[38] Fletcher, P. and Frith, C. (2008). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), pp.48–58.

[39] Friston, K., Brown, H., Siemerkus, J. and Stephan, K. (2016). The dysconnection hypothesis. Schizophrenia Research, 176(2–3), pp.83–94.

[40] Adams, R., Pinotsis, D., Tsirlis, K., Unruh, L., Mahajan, A., Horas, A., Convertino, L., Summerfelt, A., Sampath, H., Du, X., Kochunov, P., Ji, J., Repovs, G., Murray, J., Friston, K., Hong, L. and Anticevic, A. (2021). Computational Modeling of Electroencephalography and Functional Magnetic Resonance Imaging Paradigms Indicates a Consistent Loss of Pyramidal Cell Synaptic Gain in Schizophrenia. Biological Psychiatry,.

[41] Rubio, M., Drummond, J. and Meador-Woodruff, J. (2012). Glutamate Receptor Abnormalities in Schizophrenia: Implications for Innovative Treatments. Biomolecules and Therapeutics, 20(1), pp.1–18.

[42] Seeman, P. and Kapur, S. (2000). Schizophrenia: More dopamine, more D2 receptors. Proceedings of the National Academy of Sciences, 97(14), pp.7673–7675.

[43] Labrie, V., Fukumura, R., Rastogi, A., Fick, L., Wang, W., Boutros, P., Kennedy, J., Semeralul, M., Lee, F., Baker, G., Belsham, D., Barger, S., Gondo, Y., Wong, A. and Roder, J. (2009). Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Human Molecular Genetics, 18(17), pp.3227–3243.

[44] Corlett, P. and Fletcher, P. (2014). Computational psychiatry: a Rosetta Stone linking the brain to mental illness. The Lancet Psychiatry, 1(5), pp.399–402.

[45] Chan, J., Wibral, M., Stawowsky, C., Brandl, M., Helbling, S., Naumer, M., Kaiser, J. and Wollstadt, P. (2021). Predictive Coding Over the Lifespan: Increased Reliance on Perceptual Priors in Older Adults — A Magnetoencephalography and Dynamic Causal Modeling Study. Frontiers in Aging Neuroscience, 13.

[46] Pezzulo, G., Kemere, C. and van der Meer, M. (2017). Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Annals of the New York Academy of Sciences, 1396(1), pp.144–165.

[47] Shergill, S., Samson, G., Bays, P., Frith, C. and Wolpert, D. (2005). Evidence for Sensory Prediction Deficits in Schizophrenia. American Journal of Psychiatry, 162(12), pp.2384–2386.

[48] Wolpe, N., Ingram, J., Tsvetanov, K., Geerligs, L., Kievit, R., Henson, R., Wolpert, D. and Rowe, J. (2016). Ageing increases reliance on sensorimotor prediction through structural and functional differences in frontostriatal circuits. Nature Communications, 7(1).

[49] Cheng, C., Hsu, W. and Lin, Y. (2013). Effects of physiological aging on mismatch negativity: A meta-analysis. International Journal of Psychophysiology, 90(2), pp.165–171.

[50] Uchiyama, M., Nishio, Y., Yokoi, K., Hirayama, K., Imamura, T., Shimomura, T. and Mori, E. (2012). Pareidolias: complex visual illusions in dementia with Lewy bodies. Brain, 135(8), pp.2458–2469.

[51] Ruzzoli, M., Pirulli, C., Mazza, V., Miniussi, C. and Brignani, D. (2016). The mismatch negativity as an index of cognitive decline for the early detection of Alzheimer’s disease. Scientific Reports, 6(1).

[52] Mufson, E., Counts, S., Perez, S. and Ginsberg, S. (2008). Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Review of Neurotherapeutics, 8(11), pp.1703–1718.

[53] Moran, R., Campo, P., Symmonds, M., Stephan, K., Dolan, R. and Friston, K. (2013). Free Energy, Precision and Learning: The Role of Cholinergic Neuromodulation. Journal of Neuroscience, 33(19), pp.8227–8236.

[54] Riekkinen Jr., P., Pääkkönen, A., Karhu, J., Partanen, J., Soininen, H., Laakso, M., Riekkinen Sr., P. and Riekkinen Sr., P. (1997). THA disrupts mismatch negativity in Alzheimer disease. Psychopharmacology, 133(2), pp.203–206.

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Fynn Comerford

Fynn Comerford

BSc Neuroscience at The University of Edinburgh | Founder at Edinburgh’s first student-run accelerator | iGEM synthetic biology participant | Filmmaker